Thursday, June 19, 2008

A Course in Derivative Securities: Introduction to Theory and Computation (Springer Finance)

A Course in Derivative Securities: Introduction to Theory and Computation (Springer Finance)

A Course in Derivative Securities: Introduction to Theory and Computation (Springer Finance)

By Kerry Back

This book aims at a middle ground between the introductory books on derivative securities and those that provide advanced mathematical treatments. It is written for mathematically capable students who have not necessarily had prior exposure to probability theory, stochastic calculus, or computer programming. It provides derivations of pricing and hedging formulas (using the probabilistic change of numeraire technique) for standard options, exchange options, options on forwards and futures, quanto options, exotic options, caps, floors and swaptions, as well as VBA code implementing the formulas. It also contains an introduction to Monte Carlo, binomial models, and finite-difference methods.

See more Number Systems Book at Math Textbook aStore Here!

Level Set Methods and Dynamic Implicit Surfaces

Level Set Methods and Dynamic Implicit Surfaces

Level Set Methods and Dynamic Implicit Surfaces

By Stanley J. Osher, Ronald P. Fedkiw

This book is an introduction to level set methods and dynamic implicit surfaces. These are powerful techniques for analyzing and computing moving fronts in a variety of different settings. While it gives many examples of the utility of the methods to a diverse set of applications, it also gives complete numerical analysis and recipes, which will enable users to quickly apply the techniques to real problems. The book begins with a description of implicit surfaces and their basic properties, then devises the level set geometry and calculus toolbox, including the construction of signed distance functions. Part II adds dynamics to this static calculus. Topics include the level set equation itself, Hamilton-Jacobi equations, motion of a surface normal to itself, re-initialization to a signed distance function, extrapolation in the normal direction, the particle level set method and the motion of co-dimension two (and higher) objects. Part III is concerned with topics taken from the fields of Image Processing and Computer Vision. These include the restoration of images degraded by noise and blur, image segmentation with active contours (snakes), and reconstruction of surfaces from unorganized data points. Part IV is dedicated to Computational Physics. It begins with one phase compressible fluid dynamics, then two-phase compressible flow involving possibly different equations of state, detonation and deflagration waves, and solid/fluid structure interaction. Next it discusses incompressible fluid dynamics, including a computer graphics simulation of smoke, free surface flows, including a computer graphics simulation of water, and fully two-phase incompressible flow. Additional related topics include incompressible flames with applications to computer graphics and coupling a compressible and incompressible fluid. Finally, heat flow and Stefan problems are discussed. A student or researcher working in mathematics, computer graphics, science, or engineering interested in any dynamic moving front, which might change its topology or develop singularities, will find this book interesting and useful.

Find more Math Textbook Now!

Wednesday, June 18, 2008

Numerical Methods

Numerical Methods

Numerical Methods

By J. Douglas Faires, Richard L. Burden

This book emphasizes the intelligent application of approximation techniques to the type of problems that commonly occur in engineering and the physical sciences. Readers learn why the numerical methods work, what type of errors to expect, and when an application might lead to difficulties. The authors also provide information about the availability of high-quality software for numerical approximation routines. In this book, full mathematical justifications are provided only if they are concise and add to the understanding of the methods. The emphasis is placed on describing each technique from an implementation standpoint, and on convincing the reader that the method is reasonable both mathematically and computationally.

Find more Number Systems Book Now!

Microflows and Nanoflows: Fundamentals and Simulation (Interdisciplinary Applied Mathematics)

Microflows and Nanoflows: Fundamentals and Simulation (Interdisciplinary Applied Mathematics)

Microflows and Nanoflows: Fundamentals and Simulation (Interdisciplinary Applied Mathematics)

By George Karniadakis, Ali Beskok, Narayan Aluru

In the last few years there has been significant progress in the development of microfluidics and nanofluidics at the application as well as at the fundamental and simulation levels. This book provides a comprehensive summary of these changes describing fluid flow in micro and nano configurations. Where as in their previous book entitled Microflows: Fundamentals and Simulation the authors covered scales from one hundred nanometers to microns (and beyond), in this new book they discuss length scales from angstroms to microns (and beyond). While still maintaining the emphasis on fundamental concepts with a mix of semianalytical, experimental, and numerical results, this book outlines their relevance to modeling and analyzing functional devices.

The text has been divided into three main subject categories: gas flows; liquid flows; and simulation techniques. The majority of the completely new developments in this book are in liquid flows and simulation techniques chapters with modified information throughout the rest of the book.

This book can be used in a two-semester graduate course. Also, selected chapters can be used for a short course or an undergraduate-level course. The book is suitable for graduate students and researchers in fluid mechanics, physics, and in electrical, mechanical and chemical engineering.

Review of earlier volume:

Applied Mechanics, 2002: "Among recent books that addressed the physics of micro devices, the present one ... is perhaps the best of the bunch. ... Microflows: Fundamentals and Simulation has a lot to offer and is certainly recommended as a good place to start for MEMS students interested in flow physics."

See Number Systems Book at Math Textbook aStore.

Numerical Analysis

Numerical Analysis

Numerical Analysis

By Richard L. Burden, J. Douglas Faires

The new Seventh Edition of Burden and Faires' well-respected Numerical Analysis provides a foundation in modern numerical-approximation techniques. Explaining how, why, and when the techniques can be expected to work, the Seventh Edition places an even greater emphasis on building readers' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. Applied problems from diverse areas, such as engineering and physical, computer, and biological sciences, are provided so readers can understand how numerical methods are used in real-life situations. The Seventh Edition has been updated and now addresses the evolving use of technology, incorporating it whenever appropriate.

See more at Math Textbook aStore Here!

Tuesday, June 17, 2008

Pre-Calculus For Dummies (For Dummies (Math & Science))

Pre-Calculus For Dummies (For Dummies (Math & Science))

Pre-Calculus For Dummies (For Dummies (Math & Science))

By Krystle Rose Forseth, Christopher Burger, Michelle Rose Gilman

Getting ready for calculus, but feel confused? Have no fear! This unintimidating, hands-on guide walks you through all the essential topics, from absolute value and quadratic equations to logarithms and exponential functions to trig identities and matrix operations. You'll understand the concepts — not just the number crunching — and see how to perform all tasks, from graphing to tackling proofs.

  • Apply the major theorems and formulas

  • Graph trig functions like a pro

  • Find trig values on the unit circle

  • Tackle analytic geometry

  • Identify function limits and continuity

See Pre-Calculus Book at Math Textbook aStore.

Precalculus: Graphical, Numerical, Algebraic (7th Edition)

Precalculus: Graphical, Numerical, Algebraic (7th Edition)

Precalculus: Graphical, Numerical, Algebraic (7th Edition)

By Franklin Demana, Bert K. Waits, Gregory D. Foley, Daniel Kennedy

In this new edition of Precalculus, Seventh Edition, the authors encourage graphical, numerical, and algebraic modeling of functions as well as a focus on problem solving, conceptual understanding, and facility with technology. They responded to many helpful suggestions provided by students and teachers in order to create a book that is designed for instructors and written for students. As a result, we believe that the changes made in this edition make this the most effective precalculus text available today.

Get more Pre-Calculus Book at Math Textbook aStore Here!

Monday, June 16, 2008

Computational Inelasticity (Interdisciplinary Applied Mathematics)

Computational Inelasticity (Interdisciplinary Applied Mathematics)

Computational Inelasticity (Interdisciplinary Applied Mathematics)

By J.C. Simo, T.J.R. Hughes

This book describes the theoretical foundations of inelasticity, its numerical formulation and implementation. The subject matter described herein constitutes a representative sample of state-of-the- art methodology currently used in inelastic calculations. Among the numerous topics covered are small deformation plasticity and viscoplasticity, convex optimization theory, integration algorithms for the constitutive equation of plasticity and viscoplasticity, the variational setting of boundary value problems and discretization by finite element methods. Also addressed are the generalization of the theory to non-smooth yield surface, mathematical numerical analysis issues of general return mapping algorithms, the generalization to finite-strain inelasticity theory, objective integration algorithms for rate constitutive equations, the theory of hyperelastic-based plasticity models and small and large deformation viscoelasticity. Computational Inelasticity will be of great interest to researchers and graduate students in various branches of engineering, especially civil, aeronautical and mechanical, and applied mathematics.

See more Number Systems Book at Math Textbook aStore Here!

Complex Numbers from A to ...Z

Complex Numbers from A to ...Z

Complex Numbers from A to ...Z

By Titu Andreescu, Dorin Andrica

It is impossible to imagine modern mathematics without complex numbers. Complex Numbers from A to . . . Z introduces the reader to this fascinating subject that, from the time of L. Euler, has become one of the most utilized ideas in mathematics.

The exposition concentrates on key concepts and then elementary results concerning these numbers. The reader learns how complex numbers can be used to solve algebraic equations and to understand the geometric interpretation of complex numbers and the operations involving them.

The theoretical parts of the book are augmented with rich exercises and problems at various levels of difficulty. A special feature of the book is the last chapter, a selection of outstanding Olympiad and other important mathematical contest problems solved by employing the methods already presented.

The book reflects the unique experience of the authors. It distills a vast mathematical literature, most of which is unknown to the western public, and captures the essence of an abundant problem culture. The target audience includes undergraduates, high school students and their teachers, mathematical contestants (such as those training for Olympiads or the W. L. Putnam Mathematical Competition) and their coaches, as well as anyone interested in essential mathematics.

Find more Number Systems Book Here.

Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Texts in Applied Mathematics)

Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Texts in Applied Mathematics)

Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Texts in Applied Mathematics)

By Jan S. Hesthaven, Tim Warburton

The text offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. All key theoretical results are either derived or discussed, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, orthogonal polynomials etc. Through embedded Matlab codes, the algorithms are discussed and implemented for a number of classic systems of PDE’s, e.g., Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations. These developments are done in detail in one and two dimensions on general unstructured grids with high-order elements and all essential routines for 3D extensions are also included and discussed briefly. The three appendices contain an overview of orthogonal polynomials and associated library routines used throughout, a brief introduction to grid generation, and an overview of the associated software (where to get it, list of variables etc).

A variety of exercises are included at the end of most chapters.

Find more Number Systems Book at Math Textbook Store.

Sunday, June 15, 2008

Schaum's Outline of Precalculus

Schaum's Outline of Precalculus

Schaum's Outline of Precalculus

By Fred Safier

If you want top grades and thorough understanding of precalculus, this powerful study tool is the best tutor you can have! It takes you step-by-step through the subject and gives you more than 600 accompanying related problems with fully worked solutions. You also get plenty of practice problems to do on your own, working at your own speed. (Answers provided to show you how you're doing.) Famous for their clarity, wealth of illustrations and examples, and lack of dreary minutiae, Schaum's Outlines have sold more than 30 million copies worldwide­­and this guide will show you why!

Find more Math Textbook Now!

College Algebra (3rd Edition) (Beecher/Penna/Bittinger Series)

College Algebra (3rd Edition) (Beecher/Penna/Bittinger Series)

College Algebra (3rd Edition) (Beecher/Penna/Bittinger Series)

By Judith A. Beecher, Judith A. Penna, Marvin L. Bittinger

These authors have created a book to really help students visualize mathematics for better comprehension. By creating algebraic visual side-by-sides to solve various problems in the examples, the authors show students the relationship of the algebraic solution with the visual, often graphical, solution. In addition, the authors have added a variety of new tools to help students better use the book for maximum effectiveness to not only pass the course, but truly understand the material.

See more Pre-Calculus Book at Math Textbook aStore Here!

Saturday, June 14, 2008

Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)

Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)

Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)

By Peter E. Kloeden, Eckhard Platen

The numerical analysis of stochastic differential equations differs significantly from that of ordinary differential equations, due to the peculiarities of stochastic calculus. The book proposes to the reader whose background knowledge is limited to undergraduate level methods for engineering and physics, and easily accessible introductions to SDE and then applications as well as the numerical methods for dealing with them. To help the reader develop an intuitive understanding and hand-on numerical skills, numerous exercises including PC-exercises are included.

More at Number Systems Book aStore.

Number: The Language of Science

Number: The Language of Science

Number: The Language of Science

By Tobias Dantzig, Joseph Mazur

Number is an eloquent, accessible tour de force that reveals how the concept of number evolved from prehistoric times through the twentieth century. Tobias Dantzig shows that the development of math—from the invention of counting to the discovery of infinity—is a profoundly human story that progressed by “trying and erring, by groping and stumbling.” He shows how commerce, war, and religion led to advances in math, and he recounts the stories of individuals whose breakthroughs expanded the concept of number and created the mathematics that we know today.

Find more Number Systems Book at Math Textbook Store.

The Universal History of Numbers: From Prehistory to the Invention of the Computer

The Universal History of Numbers: From Prehistory to the Invention of the Computer

The Universal History of Numbers: From Prehistory to the Invention of the Computer

By Georges Ifrah

"Georges Ifrah is the man. This book, quite simply, rules. . . . It is outstanding . . . a mind-boggling and enriching experience." -The Guardian (London) "Monumental. . . . a fascinating journey taking us through many different cultures."-The Times (London)"Ifrah's book amazes and fascinates by the scope of its scholarship. It is nothing less than the history of the human race told through figures." -International Herald Tribune Now in paperback, here is Georges Ifrah's landmark international bestseller-the first complete, universal study of the invention and evolution of numbers the world over. A riveting history of counting and calculating, from the time of the cave dwellers to the twentieth century, this fascinating volume brings numbers to thrilling life, explaining their development in human terms, the intriguing situations that made them necessary, and the brilliant achievements in human thought that they made possible. It takes us through the numbers story from Europe to China, via ancient Greece and Rome, Mesopotamia, Latin America, India, and the Arabic countries. Exploring the many ways civilizations developed and changed their mathematical systems, Ifrah imparts a unique insight into the nature of human thought-and into how our understanding of numbers and the ways they shape our lives have changed and grown over thousands of years. "Dazzling."-Kirkus Reviews "Sure to transfix readers."-PublishersWeekly

See more Number Systems Book at Math Textbook aStore Here!

Friday, June 13, 2008

The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine

The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine

The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine

By C. Petzold

* His secret work in cryptanalysis during World War II

* His speculations about artificial intelligence

* His arrest for "gross indecency"

* His early death at the age of 41

About the Author

English mathematician Alan Turing (1912-1954) is the author of the 1936 paper "On Computable Numbers, with an Application to the Entscheidungsproblem" that introduced the imaginary computer called the Turing Machine for understanding the nature and limitations of computing. His famous 1950 article "Computing Machinery and Intelligence" introduced the Turing Test for gauging artificial intelligence.

American writer Charles Petzold (1953-) is the author of the acclaimed 1999 book Code: The Hidden Language of Computer Hardware and Software, a unique exploration into the digital technologies of computers. He is also the author of hundreds of articles about computer programming, as well as several books on writing programs that run under Microsoft Windows. His Web site is www.charlespetzold.com.

Get more Logic Book at Math Textbook aStore Here!

Schaum's Outline of Logic

Schaum's Outline of Logic

Schaum's Outline of Logic

By John Nolt, Dennis Rohatyn, Achille Varzi

The explosive progress of logic, since Frege, has produced applications in linguistics, mathematics and computer science. Students and practitioners of any of these fields, and of philosophy, will find this book an excellent reference or introduction. Now expanded to include non-classical logic, logic for the computer, and more. The central concepts are explained as they come into play in informal writing and conversation­­--argument, validity, relevance, and so on. This study guide progresses to concepts such as probability calculus.

Find more Logic Book Now!

Introduction to Logic

Introduction to Logic

Introduction to Logic

By Alfred Tarski

This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.

Find more Logic Book at Math Textbook Store.

Thursday, June 12, 2008

3,000 Solved Problems in Calculus

3,000 Solved Problems in Calculus

3,000 Solved Problems in Calculus

By Elliott Mendelson

Master calculus with Schaum's--the high-performance solved-problem guide.

It will help you cut study time, hone problem-solving skills, and achieve your personal best on exams!

Students love Schaum's Solved Problem Guides because they produce results. Each year, thousands of students improve their test scores and final grades with these indispensable guides. Get the edge on your classmates. Use Schaum's!

If you don't have a lot of time but want to excel in class, use this book to:

  • Brush up before tests

  • Study quickly and more effectively

  • Learn the best strategies for solving tough problems in step-by-step detail

  • Review what you've learned in class by solving thousands of relevant problems that test your skill

Compatible with any classroom text, Schaum's Solved Problem Guides let you practice at your own pace and remind you of all the important problem-solving techniques you need to remember--fast! And Schaum's are so complete, they're perfect for preparing for graduate or professional exams.

Inside you will find:

  • 3000 solved problems with complete solutions--the largest selection of solved problems yet published on this subject

  • An index to help you quickly locate the types of problems you want to solve

  • Problems like those you'll find on your exams

  • Techniques for choosing the correct approach to problems

  • Guidance toward the quickest, most efficient solutions

If you want top grades and thorough understanding of calculus, this powerful study tool is the best tutor you can have!

Get more at Math Textbook aStore Here!

Introduction to Analysis

Introduction to Analysis

Introduction to Analysis

By Maxwell Rosenlicht

Unusually clear, accessible coverage of set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals and more. Written for junior and senior undergraduates. Problems at end of each chapter cover a wide range of difficulty. Assumes a year of calculus.

Get more Mathematical Analysis Book at Math Textbook aStore Here!

Wednesday, June 11, 2008

Elementary Real and Complex Analysis (Dover Books on Mathematics)

Elementary Real and Complex Analysis (Dover Books on Mathematics)

Elementary Real and Complex Analysis (Dover Books on Mathematics)

By Georgi E. Shilov

Excellent undergraduate-level text offers coverage of real numbers, sets, metric spaces, limits, continuous functions, series, the derivative, higher derivatives, the integral and more. Each chapter contains a problem set (hints and answers at the end), while a wealth of examples and applications are found throughout the text. Over 340 theorems fully proved. 1973 edition.

More at Mathematical Analysis Book aStore.

The Concepts and Practice of Mathematical Finance (Mathematics, Finance and Risk)

The Concepts and Practice of Mathematical Finance (Mathematics, Finance and Risk)

The Concepts and Practice of Mathematical Finance (Mathematics, Finance and Risk)

By Mark S. Joshi

This introductory text provides a clear understanding of the intuition behind derivatives pricing, how models are implemented, and how they are used and adapted in practice. M. Joshi covers the strengths and weaknesses of such models as stochastic volatility, jump diffusion, and variance gamma, as well as the Black-Scholes. Examples and exercises, with answers, as well as computer projects, challenge the mind and encourage learning how to become a good quantitative analyst.

Get more Mathematical Analysis Book Here!

Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills

Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills

Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills

By Paul J. Nahin

I used to think math was no fun

'Cause I couldn't see how it was done

Now Euler's my hero

For I now see why zero

Equals e[pi] i+1


--Paul Nahin, electrical engineer

In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula--long regarded as the gold standard for mathematical beauty--and shows why it still lies at the heart of complex number theory.

This book is the sequel to Paul Nahin's An Imaginary Tale: The Story of I [the square root of -1], which chronicled the events leading up to the discovery of one of mathematics' most elusive numbers, the square root of minus one. Unlike the earlier book, which devoted a significant amount of space to the historical development of complex numbers, Dr. Euler begins with discussions of many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. The topics covered span a huge range, from a never-before-told tale of an encounter between the famous mathematician G. H. Hardy and the physicist Arthur Schuster, to a discussion of the theoretical basis for single-sideband AM radio, to the design of chase-and-escape problems.

The book is accessible to any reader with the equivalent of the first two years of college mathematics (calculus and differential equations), and it promises to inspire new applications for years to come. Or as Nahin writes in the book's preface: To mathematicians ten thousand years hence, "Euler's formula will still be beautiful and stunning and untarnished by time."

Get more Mathematical Analysis Book at Math Textbook aStore Here!

Tuesday, June 10, 2008

Precalculus : Mathematics for Calculus: 5th Edition (with CD-ROM)

Precalculus : Mathematics for Calculus: 5th Edition (with CD-ROM)

Precalculus : Mathematics for Calculus: 5th Edition (with CD-ROM)

By James Stewart, Lothar Redlin, Saleem Watson

This best selling author team explains concepts simply and clearly, without glossing over difficult points. Problem solving and mathematical modeling are introduced early and reinforced throughout, so that when students finish the course, they have a solid foundation in the principles of mathematical thinking. This comprehensive, evenly paced book provides complete coverage of the function concept and integrates substantial graphing calculator materials that help students develop insight into mathematical ideas. The authors' attention to detail and clarity, as in James Stewart's market-leading Calculus text, is what makes this text the market leader.

More at Pre-Calculus Book aStore.

Trigonometry (Lial/Hornsby/Schneider Series)

Trigonometry (Lial/Hornsby/Schneider Series)

Trigonometry (Lial/Hornsby/Schneider Series)

By Margaret L. Lial, John Hornsby, David I. Schneider

This book, intended for a graphing calculator optional trigonometry course, offers students the content and tools they will need to successfully master trigonometry. The authors have addressed the needs of students who will continue their study of mathematics, as well as those who are taking trigonometry as their final mathematics course. Emphasis is placed on exploring mathematical concepts by using real date, current applications and optional technology. Applied examples and exercises, allowing students to focus on real-life applications of mathematics. Selected examples feature traditional algebraic as well as optional graphing calculator solutions. We have taken great care to only use this format in examples where the graphing calculator can naturally be used to support and/or enhance the algebraic solution. For those interested in Mathematics.

See Pre-Calculus Book at Math Textbook aStore.

Pre-Calculus Demystified

Pre-Calculus Demystified

Pre-Calculus Demystified

By Rhonda Huettenmueller

Packed with practical examples, graphs, and Q&As, this complete self-teaching guide from the best-selling author of Algebra Demystified covers all the essential topics, including: absolute value, nonlinear inequalities, functions and their graphs, inverses, proportion and ratio, and much more.

Find more Pre-Calculus Book at Math Textbook Store.

Monday, June 9, 2008

An Introduction to Mathematical Reasoning: Numbers, Sets and Functions

An Introduction to Mathematical Reasoning: Numbers, Sets and Functions

An Introduction to Mathematical Reasoning: Numbers, Sets and Functions

By Peter J. Eccles

This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.

More at Math Textbook aStore.

The Book of Numbers

The Book of Numbers

The Book of Numbers

By John H. Conway, Richard Guy

In THE BOOK OF NUMBERS, two famous mathematicians fascinated by beautiful and intriguing number patterns share their insights and discoveries with each other and with readers. John Conway is the showman, master of mathematical games and flamboyant presentations; Richard Guy is the encyclopedist, always on top of problems waiting to be solved. Together they show us why patterns and properties of numbers have captivated mathematicians and non-mathematicians alike for centuries. THE BOOK OF NUMBERS features Conway and Guy's favorite stories about all the kinds of numbers any of us is likely to encounter, and many others besides. "Our aim," the authors write, "is to bring to the inquisitive reader. . .an explanation of the many ways the word 'number' is used." They explore patterns that emerge in arithmetic, algebra, and geometry, describe these pattern' relevance both inside and outside mathematics, and introduce the strange worlds of complex, transcendental, and surreal numbers. This unique book brings together facts, pictures and stories about numbers in a way that no one but an extraordinarily talented pair of mathematician/writers could do.

Find more Number Systems Book Now!

Number Story: From Counting to Cryptography

Number Story: From Counting to Cryptography

Number Story: From Counting to Cryptography

By Peter M. Higgins

Numbers have fascinated people for centuries. They are familiar to everyone, forming a central pillar of our understanding of the world, yet the number system was not presented to us "gift-wrapped" but, rather, was developed over millennia. Today, despite all this development, it remains true that a child may ask a question about numbers that no one can answer. Many unsolved problems surrounding number matters appear as quirky oddities of little account while others are holding up fundamental progress in mainstream mathematics.

Peter Higgins distills centuries of work into one delightful narrative that celebrates the mystery of numbers and explains how different kinds of numbers arose and why they are useful. Full of historical snippets and interesting examples, the book ranges from simple number puzzles and magic tricks, to showing how ideas about numbers relate to real-world problems, such as: How are our bank account details kept secure when shopping over the internet? What are the chances of winning at Russian roulette; or of being dealt a flush in a poker hand?

This fascinating book will inspire and entertain readers across a range of abilities. Easy material is blended with more challenging ideas about infinity and complex numbers, and a final chapter "For Connoisseurs" works through some of the particular claims and examples in the book in mathematical language for those who appreciate a complete explanation.

As our understanding of numbers continues to evolve, this book invites us to rediscover the mystery and beauty of numbers and reminds us that the story of numbers is a tale with a long way to run...

See more Number Systems Book at Math Textbook aStore Here!

Sunday, June 8, 2008

Q.E.D.: Beauty in Mathematical Proof (Wooden Books)

Q.E.D.: Beauty in Mathematical Proof (Wooden Books)

Q.E.D.: Beauty in Mathematical Proof (Wooden Books)

From Walker & Company

Q.E.D. presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras’s theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes’ method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.

Find more Math Textbook Now!

Axiomatic Set Theory

Axiomatic Set Theory

Axiomatic Set Theory

By Patrick Suppes

In one of the finest treatments for upper undergraduate and graduate level students, Professor Suppes presents axiomatic set theory: the basic paradoxes and history of set theory, and advanced topics such as relations and functions, equipollence, finite sets and cardinal numbers, rational and real numbers and more. Exercises. References. Indexes.

Get more Logic Book at Math Textbook aStore Here!

An Introduction to Probability and Inductive Logic

An Introduction to Probability and Inductive Logic

An Introduction to Probability and Inductive Logic

By Ian Hacking

This is an introductory textbook on probability and induction written by one of the world's foremost philosophers of science. The book has been designed to offer maximal accessibility to the widest range of students (not only those majoring in philosophy) and assumes no formal training in elementary symbolic logic. It offers a comprehensive course covering all basic definitions of induction and probability, and considers such topics as decision theory, Bayesianism, frequency ideas, and the philosophical problem of induction. The key features of the book are: * A lively and vigorous prose style* Lucid and systematic organization and presentation of the ideas* Many practical applications* A rich supply of exercises drawing on examples from such fields as psychology, ecology, economics, bioethics, engineering, and political science* Numerous brief historical accounts of how fundamental ideas of probability and induction developed.* A full bibliography of further reading Although designed primarily for courses in philosophy, the book could certainly be read and enjoyed by those in the social sciences (particularly psychology, economics, political science and sociology) or medical sciences such as epidemiology seeking a reader-friendly account of the basic ideas of probability and induction. Ian Hacking is University Professor, University of Toronto. He is Fellow of the Royal Society of Canada, Fellow of the British Academy, and Fellow of the American Academy of Arts and Sciences. he is author of many books including five previous books with Cambridge (The Logic of Statistical Inference, Why Does Language Matter to Philosophy?, The Emergence of Probability, Representing and Intervening, and The Taming of Chance).

More at Math Textbook aStore.

Saturday, June 7, 2008

Calculus: An Intuitive and Physical Approach (Second Edition)

Calculus: An Intuitive and Physical Approach (Second Edition)

Calculus: An Intuitive and Physical Approach (Second Edition)

By Morris Kline

Application-oriented introduction relates the subject as closely as possible to science. In-depth explorations of the derivative, the differentiation and integration of the powers of x, theorems on differentiation and antidifferentiation, the chain rule and examinations of trigonometric functions, logarithmic and exponential functions, techniques of integration, polar coordinates, much more. Examples. 1967 edition. Solution guide available upon request.

Get more at Math Textbook aStore Here!

Friday, June 6, 2008

Quick Calculus: A Self-Teaching Guide, 2nd Edition

Quick Calculus: A Self-Teaching Guide, 2nd Edition

Quick Calculus: A Self-Teaching Guide, 2nd Edition

By Daniel Kleppner, Norman Ramsey

Quick Calculus 2nd Edition A Self-Teaching Guide Calculus is essential for understanding subjects ranging from physics and chemistry to economics and ecology. Nevertheless, countless students and others who need quantitative skills limit their futures by avoiding this subject like the plague. Maybe that's why the first edition of this self-teaching guide sold over 250,000 copies. Quick Calculus, Second Edition continues to teach the elementary techniques of differential and integral calculus quickly and painlessly. Your "calculus anxiety" will rapidly disappear as you work at your own pace on a series of carefully selected work problems. Each correct answer to a work problem leads to new material, while an incorrect response is followed by additional explanations and reviews. This updated edition incorporates the use of calculators and features more applications and examples. "…makes it possible for a person to delve into the mystery of calculus without being mystified." —Physics Teacher

Find more at Math Textbook Store.

Principles of Mathematical Analysis, Third Edition

Principles of Mathematical Analysis, Third Edition

Principles of Mathematical Analysis, Third Edition

By Walter Rudin

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included.

This text is part of the Walter Rudin Student Series in Advanced Mathematics.

Find more Mathematical Analysis Book at Math Textbook Store.

Schaum's Outline of Tensor Calculus (Schaum's)

Schaum's Outline of Tensor Calculus (Schaum's)

Schaum's Outline of Tensor Calculus (Schaum's)

By David C. Kay

Confusing Textbooks?

Missed Lectures?

Tough Test Questions?

Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

  • Practice problems with full explanations that reinforce knowledge

  • Coverage of the most up-to-date developments in your course field

  • In-depth review of practices and applications

Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores!

Schaum's Outlines-Problem Solved.

Get more Mathematical Analysis Book Now.

Thursday, June 5, 2008

To Infinity and Beyond

To Infinity and Beyond

To Infinity and Beyond

By Eli Maor

Eli Maor examines the role of infinity in mathematics and geometry and its cultural impact on the arts and sciences. He evokes the profound intellectual impact the infinite has exercised on the human mind--from the "horror infiniti" of the Greeks to the works of M. C. Escher; from the ornamental designs of the Moslems, to the sage Giordano Bruno, whose belief in an infinite universe led to his death at the hands of the Inquisition. But above all, the book describes the mathematician's fascination with infinity--a fascination mingled with puzzlement. "Maor explores the idea of infinity in mathematics and in art and argues that this is the point of contact between the two, best exemplified by the work of the Dutch artist M. C. Escher, six of whose works are shown here in beautiful color plates."--Los Angeles Times "[Eli Maor's] enthusiasm for the topic carries the reader through a rich panorama."--Choice "Fascinating and enjoyable.... places the ideas of infinity in a cultural context and shows how they have been espoused and molded by mathematics."--Science

Find more Logic Book at Math Textbook Store.

Topoi: The Categorial Analysis of Logic (Dover Books on Mathematics)

Topoi: The Categorial Analysis of Logic (Dover Books on Mathematics)

Topoi: The Categorial Analysis of Logic (Dover Books on Mathematics)

By Robert Goldblatt

A classic exposition of a branch of mathematical logic that uses category theory, this text is suitable for advanced undergraduates and graduate students and accessible to both philosophically and mathematically oriented readers. Robert Goldblatt is Professor of Pure Mathematics at New Zealand's Victoria University. 1983 edition.

More at Logic Book aStore.

Godel's Proof

Godel's Proof

Godel's Proof

By Ernest Nagel, James R. Newman

In 1931 Kurt Gödel published his fundamental paper, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems." This revolutionary paper challenged certain basic assumptions underlying much research in mathematics and logic. Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences—perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."

However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.

New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.

More at Math Textbook aStore.

Wednesday, June 4, 2008

The Book of Numbers: The Secret of Numbers and How They Changed the World

The Book of Numbers: The Secret of Numbers and How They Changed the World

The Book of Numbers: The Secret of Numbers and How They Changed the World

By Peter J. Bentley

Unraveling the secrets of numbers, from the discovery of zero to infinity.

In clear language, The Book of Numbers cuts through the mystery and fear surrounding numbers to reveal their fascinating nature and roles in architecture, quantum mechanics, computer technology, biology, commerce, philosophy, art, music, religion and more. Indeed, numbers are part of every discipline in the sciences and the arts.

With 350 illustrations, including diagrams, photographs and computer imagery, the book chronicles the centuries-long search for the meaning of numbers by famous and lesser-known mathematicians, and explains the puzzling aspects of the mathematical world. Topics include:

  • The earliest ideas of numbers and counting

  • Patterns, logic, calculating

  • Natural, perfect, amicable and prime numbers

  • Numerology, the power of numbers, superstition

  • The computer, the Enigma Code

  • Infinity, the speed of light, relativity

  • Complex numbers

  • The Big Bang and Chaos theories

  • The Philosopher's Stone.

The Book of Numbers shows enthusiastically that numbers are neither boring nor dull but rather involve intriguing connections, rivalries, secret documents and even mysterious deaths.

More at Number Systems Book aStore.

Implementing Models in Quantitative Finance: Methods and Cases (Springer Finance)

Implementing Models in Quantitative Finance: Methods and Cases (Springer Finance)

Implementing Models in Quantitative Finance: Methods and Cases (Springer Finance)

By Gianluca Fusai, Andrea Roncoroni

This book puts numerical methods into action for the purpose of solving concrete problems arising in quantitative finance. Part one develops a comprehensive toolkit including Monte Carlo simulation, numerical schemes for partial differential equations, stochastic optimization in discrete time, copula functions, transform-based methods and quadrature techniques. The content originates from class notes written for courses on numerical methods for finance and exotic derivative pricing held by the authors at Bocconi University since the year 2000. Part two proposes eighteen self-contained cases covering model simulation, derivative valuation, dynamic hedging, portfolio selection, risk management, statistical estimation and model calibration. It encompasses a wide variety of problems arising in markets for equity, interest rates, credit risk, energy and exotic derivatives. Each case introduces a problem, develops a detailed solution and illustrates empirical results. Proposed algorithms are implemented using either Matlab® or Visual Basic for Applications® in collaboration with contributors.

Find more Number Systems Book at Math Textbook Store.

Bayesian Computation with R (Use R)

Bayesian Computation with R (Use R)

Bayesian Computation with R (Use R)

By Jim Albert

There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry.

Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.

This book is a suitable companion book for an introductory course on Bayesian methods. Also the book is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book.

More at Number Systems Book aStore.

Tuesday, June 3, 2008

104 Number Theory Problems: From the Training of the USA IMO Team

104 Number Theory Problems: From the Training of the USA IMO Team

104 Number Theory Problems: From the Training of the USA IMO Team

By Titu Andreescu, Dorin Andrica, Zuming Feng

This challenging problem book by renowned US Olympiad coaches, mathematics teachers, and researchers develops a multitude of problem-solving skills needed to excel in mathematical contests and research in number theory. Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas, conjectures, and conclusions in writing. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.

Key features:

* Contains problems developed for various mathematical contests, including the International Mathematical Olympiad (IMO)

* Builds a bridge between ordinary high school examples and exercises in number theory and more sophisticated, intricate and abstract concepts and problems

* Begins by familiarizing students with typical examples that illustrate central themes, followed by numerous carefully selected problems and extensive discussions of their solutions

* Combines unconventional and essay-type examples, exercises and problems, many presented in an original fashion

* Engages students in creative thinking and stimulates them to express their comprehension and mastery of the material beyond the classroom

104 Number Theory Problems is a valuable resource for advanced high school students, undergraduates, instructors, and mathematics coaches preparing to participate in mathematical contests and those contemplating future research in number theory and its related areas.

Find more Logic Book at Math Textbook Store.

God Created the Integers: The Mathematical Breakthroughs That Changed History

God Created the Integers: The Mathematical Breakthroughs That Changed History

God Created the Integers: The Mathematical Breakthroughs That Changed History

By Stephen Hawking

Bestselling author and physicist Stephen Hawking explores the "masterpieces" of mathematics, 25 landmarks spanning 2,500 years and representing the work of 15 mathematicians, including Augustin Cauchy, Bernard Riemann, and Alan Turing. This extensive anthology allows readers to peer into the mind of genius by providing them with excerpts from the original mathematical proofs and results. It also helps them understand the progression of mathematical thought, and the very foundations of our present-day technologies. Each chapter begins with a biography of the featured mathematician, clearly explaining the significance of the result, followed by the full proof of the work, reproduced from the original publication.

More at Logic Book aStore.

Monday, June 2, 2008

A New Kind of Science

A New Kind of Science

A New Kind of Science

By Stephen Wolfram

This long-awaited work from one of the world's most respected scientists presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe.

Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.

Written with exceptional clarity, and illustrated by more than a thousand original pictures, this seminal book allows scientists and non-scientists alike to participate in what promises to be a major intellectual revolution.

Get more Mathematical Analysis Book at Math Textbook aStore Here!

Elementary Analysis: The Theory of Calculus

Elementary Analysis: The Theory of Calculus

Elementary Analysis: The Theory of Calculus

By Kenneth A. Ross

Designed for students having no previous experience with rigorous proofs, this text on analysis can be used immediately following standard calculus courses. It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.

See Mathematical Analysis Book Here.

How to Ace the Rest of Calculus: The Streetwise Guide: Including Multi-Variable Calculus

How to Ace the Rest of Calculus: The Streetwise Guide: Including Multi-Variable Calculus

How to Ace the Rest of Calculus: The Streetwise Guide: Including Multi-Variable Calculus

By Colin Adams, Abigail Thompson, Joel Hass

The sequel to How to Ace Calculus, How to Ace the Rest of Calculus provides humorous and highly readable explanations of the key topics of second and third semester calculus—such as sequences and series, polor coordinates, and multivariable calculus—without the technical details and fine print that would be found in a formal text.

See Mathematical Analysis Book at Math Textbook aStore.

Advanced Calculus Demystified

Advanced Calculus Demystified

Advanced Calculus Demystified

By David Bachman

Your INTEGRAL tool for mastering ADVANCED CALCULUS

Interested in going further in calculus but don't where to begin? No problem! With Advanced Calculus Demystified, there's no limit to how much you will learn.

Beginning with an overview of functions of multiple variables and their graphs, this book covers the fundamentals, without spending too much time on rigorous proofs. Then you will move through more complex topics including partial derivatives, multiple integrals, parameterizations, vectors, and gradients, so you'll be able to solve difficult problems with ease. And, you can test yourself at the end of every chapter for calculated proof that you're mastering this subject, which is the gateway to many exciting areas of mathematics, science, and engineering.

This fast and easy guide offers:

  • Numerous detailed examples to illustrate basic concepts

  • Geometric interpretations of vector operations such as div, grad, and curl

  • Coverage of key integration theorems including Green's, Stokes', and Gauss'

  • Quizzes at the end of each chapter to reinforce learning

  • A time-saving approach to performing better on an exam or at work

Simple enough for a beginner, but challenging enough for a more advanced student, Advanced Calculus Demystified is one book you won't want to function without!

More at Mathematical Analysis Book aStore.

Sunday, June 1, 2008

How to Prove It: A Structured Approach

How to Prove It: A Structured Approach

How to Prove It: A Structured Approach

By Daniel J. Velleman

Geared to preparing students to make the transition from solving problems to proving theorems, this text teaches them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Get more Logic Book at Math Textbook aStore Here!

The Art and Craft of Problem Solving

The Art and Craft of Problem Solving

The Art and Craft of Problem Solving

By Paul Zeitz

The newly revised Second Edtion of this distinctive text uniquely blends interesting problems with strategies, tools, and techniques to develop mathematical skill and intuition necessary for problem solving. Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.

Find more Math Textbook Now!